Content:	Grade or Course:	Date Developed:	
Physical Science	Honors Physics	3/7/2018	
Overview:			
Honors Physics builds physics concepts through the modeling process, building knowledge through the use of experimentation, graphing, and algebra-based mathematics. In addition, development and appreciation of inquiry and critical thinking skills is stressed; students are regularly asked to			
apply fundamental physics principles, in conjunction with general problem solving skills, to a wide variety of "real-life" situations.			
This 1 credit course, which is intended primarily for students in their senior			
year, provides a strong background for students intending to pursue a life			
requirement of a high school lab-based physics course. Primary topics			
include kinematics, forces, dynamics, and momentum. Students enrolled in			
Honors Physics must have completed or be enrolled in Algebra 2.			
Essential Questions:			
How can scientific models be used to describe and quantify the nature and interactions of matter?			
How can experimental data be used to create mathematical models, graphical models, and verbal models that describe the physical world?			
How can we use the past and present conditions of the physical world to predict			
the future?			
How accurately can we predict the condition of the physical world based on past			
and present conditions?			
How are physics principles relevant to everyday life?			
EO's addressed to proficiency level:			
Students will understand, demonstrate, and be evaluated on the following Scientific			
Asking Ouestions and Defining Problems			
 Planning and Carrying Out Investigations 			
Analyzing and Interpreting Data			
Using Math and Computational Thinking			
 Obtaining, Evaluatin 	ig, and Communicating Inform	ation	

Standards:

Students will understand and use the following additional Scientific Practices:

- Developing and Using Models
- Constructing Explanations and Designing Solutions
- Engaging in Argument over Evidence

Students will understand and use the following Cross-Cutting Concepts:

- Patterns
- Cause and effect: Mechanism and explanation
- Scale, proportion, and quantity
- Systems and system models
- Stability and change

Students will understand, use, and be evaluated on the following Disciplinary Core Ideas:

- Students will understand that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. (*HS-PS2-1*))
- Students will understand that the total momentum of a system of objects is conserved when there is no net force on the system. (*HS-PS2-2*)
- Students will design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. (HS-PS2-3)
- Students will understand how Newton's Law of Gravitation and Coulomb's Law can be used to describe and predict the gravitational and electrostatic forces between objects. (*HS-PS2-4*)
- Students will understand and be able to predict the motion of orbiting objects in the solar system. (HS-ESS1-4)

• Unite

Units:	
Introductory Unit	Prerequisite Skills
Unit 1	Kinematics: Graphs and Models
Unit 2	Kinematics: Using Equations with Simple and Complex Motion
Unit 3	Newton's Laws of Motion
Unit 4	Interacting Systems
Unit 5	Two Dimensional Motion
EO Assessments:	
 Nowton's Science 	cond Law Lab

- Newton's Second Law Lab
- Mars Rover Project
- Dissipated Energy Lab