Content:	Grade or Course:	Date Developed:
	Lab blology	//30/2010
Overview:		<u>I</u>
Lab Biology is a year-long course worth 1 credit, and is open to students who		
have successfully compl	leted Global Science. The cla	ss meets every other day for
a full year. The intent of	t Lab Biology is to provide sti	udents who may or may not
be contemplating post s	secondary studies with exper	iences that allow students
Lab biology is taught wi	ith a molecular approach white	are students strive to
understand the intercor	nections of hiological conce	nts These concents are
divided into seven units of study: Nature of Science, Fundamental properties of		
Energy and Matter, Cell respiration and Photosynthesis, Cell Transport, Cell		
cycle regulation, Genetic Variability, Molecular genetics, and Evolution.		
Each unit of study provi	des the student with lab exp	eriences that are linked to
the concepts being taug	ht.	
Instruction and assessment will include class discussion, lab/field experiments,		
interpreting and analyzing data, modeling biological phenomena, reading basic		
texts and communicating science in written and oral formats. Successful		
participation at this level will require that students be active members of the		
classroom community v	vho can work independently	as well as collaboratively to
achieve the learning goa	als.	
CC: How are the structures of	of hiological components rela	tod to their functions?
CC: How and why do living systems maintain stability or respond to change?		
CC: How can we use cause and effect relationships to explain biological phenomena?		
CC: How does energy flow an	nd matter cycle among and w	vithin biological systems?
How is science distinguished from other ways of knowing?		
How are the atoms, molecules and biological components of living things organized		
at different levels to allow th	e functions of life?	
How do cells acquire and ma	anipulate energy and matter:	
How and why do cens replic	of failing to regulate the coll	life cycle?
How do our bodies guard ag	ainst disease?	
How is biological information	in recorded communicated a	and transferred?
How can genetic knowledge organisms?	be used to manipulate, contr	col, and/or improve
How can variations in geneti	ic code affect individuals and	populations?
How can evolution account f	for the development and mod	lification of all species?
How is biology relevant to everyday life?		

EO's addressed to proficiency level:

Students will understand, demonstrate, and be evaluated on the following Scientific Practices:

- P1: Asking Questions and Defining Problems
- P4: Analyzing and Interpreting Data
- P5: Using Math and Computational Thinking
- P6: Constructing Explanations
- P8: Obtaining, Evaluating, and Communicating Information

Standards:

Students will understand and use the following additional Scientific Practices:

- P2: Developing and Using Models
- P3: Planning and Carrying out Investigations
- P7: Engaging in Argument over Evidence

Students will understand and use the following Cross-Cutting Concepts:

- Systems and system models
- Energy and matter
- Stability and change
- Structure and Function

Students will understand, use, and be evaluated on the following Disciplinary Core Ideas:

- 1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins that carry out the essential functions of life through systems of specialized cells. HS-LS1-1
- 2. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. HS-LS1-4
- 3. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. HS-LS1-5
- 4. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy. HS-LS1-7
- 5. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. HS-LS2-4
- 6. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. HS-LS2-5
- 7. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. HS-LS3-1
- 8. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis,

(2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. HS-LS3-2

- 9. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. HS-LS3-3
- 10. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. HS-LS4-1
- 11. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. HS-LS4-2
- 12. Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. HS-LS4-3

Units:

Unit 1	Nature of Science- Logical thought and Experimental Design	
Unit 2	Fundamental properties of Energy and Matter	
Unit 3	Cell respiration and Photosynthesis	
Unit 4	Cell cycle regulation- Cancer and Immune system	
Unit 5	Genetic Variability- Meiosis and Heritability	
Unit 6	Molecular genetics- Structure of DNA and Central Dogma	
Unit 7	Evolution- Natural Selection and Speciation	
<mark>0</mark> Assessments:		
Call Pospiration Exercise CEP		

E

- Cell Respiration Exercise CER
- Cell Size Efficiency CER
- Fast Plant Mendelian Genetics CER
- Natural Selection CER