Content:	Grade or Course:	Date Developed:		
Physical Science	AP Physics C: Mechanics	7/7/2018		
Overview:	Overview:			
The intent of AP Physics C: Mechanics is to provide an in-depth examination of				
Newtonian mechanics and energy, focusing both on problem solving and laboratory				
experiences. A primary goal is to demonstrate to students the relevance of physics				
through the use of real-life examples that are relevant to my students' lives. In				
addition, development and appreciation of inquiry and critical thinking skills is				
stressed; students are regularly asked to apply fundamental physics principles, in				
conjunction with general problem solving skills, to a wide variety of "real-life"				
situations.				
As this 15 credit ele	ctive course requires a working know	wledge of basic calculus		
skills (differentiation and integration) students are required to have passed or to be				
concurrently completing an AP course in calculus (no exceptions will be made to this				
prerequisite). Most students have a strong interest in pursuing a post-secondary				
education in the fields of science engineering or medicine. The syllabus for this				
course is based on th	ne syllabus recommended by the Co	ollege Board.		
Essential Ouestions:				
How can scientific models be used to describe and quantify the nature and				
interactions of matter and energy?				
How can simple mathematical models be used to describe physical phenomena?				
How can more advanced, calculus-based mathematical models improve those				
descriptions?				
How can we use the past and present conditions of the physical world to predict the				
future?				
How accurately can we predict the condition of the physical world based on past				
and present conditions?				
How are physics pr	inciples relevant to everyday life?			
EO's addressed to proficiency level:				
Students will understand, demonstrate, and be evaluated on the following Scientific				
Practices:				
Asking Questions and Defining Problems				
Planning and Carrying Out Investigations				
Analyzing and interpreting Data Using Math and Computational Thinking				
Obtaining Evaluating and Communicating Information				
Obtaining, Evaluating, and Communicating Information				

Standards:

Students will understand and use the following additional Scientific Practices:

- Developing and Using Models
- Constructing Explanations and Designing Solutions
- Engaging in Argument over Evidence

Students will understand and use the following Cross-Cutting Concepts:

- Patterns
- Cause and effect: Mechanism and explanation
- Scale, proportion, and quantity
- Systems and system models
- Energy and matter
- Stability and change

Students will understand, use, and be evaluated on the following Disciplinary Core Ideas:

- Students will understand that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. (*HS-PS2-1*))
- Students will understand that the total momentum of a system of objects is conserved when there is no net force on the system. (*HS-PS2-2*)
- Students will design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. (HS-PS2-3)
- Students will understand how Newton's Law of Gravitation and Coulomb's Law can be used to describe and predict the gravitational and electrostatic forces between objects. (*HS-PS2-4*)
- Students will understand and be able to predict the motion of orbiting objects in the solar system. (HS-ESS1-4)
- Students will understand the relationship between the change in the energy of one component in a system and the change in energy of the other component(s) and the energy flows in and out of the system are known. (HS-PS3-1)
- Students will understand that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects). (*HS-PS3-2*)
- Students will design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy. (*HS-PS3-3*)

Units:

1051	
Unit 1	Introduction to Laboratories
Unit 2	Kinematics
Unit 3	Newton's Laws of Motion
Unit 4	Uniform Circular Motion
Unit 5	Gravitation
Unit 6	Systems of Particles and Linear Momentum

	Unit 7	Work, Energy, and Power	
	Unit 8	Angular Kinematics and Dynamics	
	Unit 9	Oscillations	
EO As	ssessments:		
•	Engineering	a Safer Intersection Project	
Atwood's Machine Lab			
•	Dissipated Energy Lab		
•	Prosthetics Engineering Project		